Contribution from the Max Plank Institute, Mülheim, West Germany, and Department of Chemistry, University of Nottingham, University Park, Nottingam, NG7 2RD, United Kingdom

The Far Infra-red Spectra and Bonding of some Five and Six Coordinate Complex Tin Ions

M.K. Das, J. Buckle, and P.G. Harrison^{*}

Received April 28, 1971

Far infra-red spectra of several five- and six- coordinate organotin complex ions have been recorded in the tin-ligand stretching region, and stereochemistries assigned where possible. The trialkyltin moiety in a five-coordinate environment is universally trigonal planar. The methyl groups of the $Me_2SnX_3^-$, X = Cl, Br, anions occupy similar cis equatorial positions. The organic residues in octahedral dialkyltin complexes are, with very few exceptions, mutually trans. As the coordination number at tin increases, the tin-carbon bonds have increasing s-character, and the dominance of the Fermi contact term of the nmr coupling constant is confirmed by the shortening of the tin-methyl bond as ${}^{2}I({}^{119}Sn-C-{}^{1}H)$ increases.

Introduction

The vibrational spectra of four-cordinate alkyltin halides, R4-nSnXn, and five- and six-coordinate complexes derived from them has aroused much interest.¹⁻⁷ In the present paper we report the far infra-red spectra of some five- and six-coordinate organohalogenotin complex anions. In addition, we have studied the corresponding infra-red spectra of eleven tin complex cations containing terpyridyl as a ligand.

Experimental Section

The anionic tin complexes were prepared by mixing the appropriate tin halide and tetraethyl(butyl)ammonium halide in the desired molar ratio in either ethanol or dichloromethane. Analytical figures for new complexes are given in Table I. We thank Dr. E. Rosenberg for the gift of the terpyridyl complexes.

Infra-red spectra were recorded as nujol mulls using Beckman IR11 and Perkin-Elmer 457 instruments. Nmr spectra were recorded using a Varian HA-100 spectrometer at 33.5°.

Results

The data for the five- and six-coordinate tin complexes is given in Table II.

- Beattie I.R. and McQuillan G.P., J. Chem. Soc., 1519 (1963).
 Clark J.P. and Wilkins C.J., J. Chem. Soc. (A), 871 (1966).
 Strivastava T.S., J. Organometal. Chem., 10, 373, 375 (1967).
 Clark R.J.H., Davies A.G., and Puddephatt R.J., J. Chem. Soc.
 (A), 1828 (1968); and refs. contained therein.

Five-coordinate complexes of the type MX_3Y_2 may assume either of the two trigonal bipyramidal arrangements, A and B, of D_{3h} and C_{2v} symmetry respectively.**

Figure 1. Possible geometries for MX₃Y₂.

Group theoretical predictions for the normal stretching modes for these configurations are summarized in Table III. Thus it is apparent that the anions Me₃- SnX_2^{-} , X = Cl, Br, I, with only one tin-carbon and one tin-halogen stretching frequency, have the trans structure A. The fluoro anion, Me₂SnF₃⁻, also has structure A, but with *trans* methyl groups.⁵ The trichloro- and tribromodimethyltin anions, on the other hand, show both symmetric and antisymmetric tincarbon and three tin-halogen stretching frequencies, and therefore possess the *cis* configuration **B**.

The spectrum of the diphenyltrichlorotin anion is worthy of comment. Previous investigators^{3,6,8} have assigned bands at ca. 450 cm⁻¹ and 260-200 cm⁻¹ to v(Sn-Ph) symmetric and antisymmetric. These bands are more properly^{9,10} described as the y- and t-modes of Whiffen's notation¹¹ (Figure 2). The y-mode is largely a ring deformation (ocurring at 450vs in Ph₂SnCl₃⁻), whereas the t-mode describes what is for the most part the Sn-Ph stretching vibration, for which two bands (219s and 228vs in Ph₂SnCl₃-) are

- (11) Whiffen D.H., J. Chem. Soc., 1350 (1956).

Das, Buckle, Harrison | Far I.R. Spectra of some Five and Six Coordinate Complex Tin Ions

^{**} A trigonal bipyramidal isomer of Cs symmetry is also possible which predicts the same number of infra-red active bands as the C2v which predicts the same number of infra-red active bands as the C_{3v} isomer [v(M-X): 2A' + A''; v(M-Y): 2A']. Although these may bb distinguished by observation of skeletal bending modes, this isomer is not incluted in the discussion for reasons which become apparent later. Square pyramidal geometries are also possible, but energetically less probable. (5) Wilkins C.J. and Haendler H.M., J. Chem. Soc., 3174 (1965). (6) Strivastava T.S., J. Organometal. Chem., 16, p. 53 (1969). (7) Hobbs C.W. and Toblas R.S., Inorg. Chem., 9, 1037 (1970). (8) Kriegsman H. and Geissler H., Z. anorg. Chem., 523, 170 (1963). (9) Brown D.H., Mohammed A., and Sharp D.W.A., Spectrochim. Acta, 21, 659 (1965). (11) Whiffen D.H., I. Chem. Soc., 1350 (1956).

Table 1. Analytical Data on the New Complex Ions.

Complex		Found			Required	
	С	Н	Ν	С	Ĥ	N
$E_{1}N^+Me_3SnBr_2^-$	29.37	6.18	2.94	29.12	6.39	3.09
$Bu_4N^+Me_3SnI_2^-$	35.21	6.60	2.01	34.59	6.82	2.12
$2Et_4N^+Me_2SnBr_4^{2-}$	29.08	6.37	3. 9 9	29.68	6.32	3.84
$2Bu_4N^+Me_2SnI_4^{2-}$	36.79	7.62	2.21	35.8	6.8	2.45ª
2Et ₄ N ⁺ MeSnBr ₅ ²⁻	25.98	5.79	2.99	25.73	5.42	3.54
2Et ₄ N ⁺ MeSnCl ₃ Br ₂ ²⁻	31.12	6.58	3.94	30.93	6.52	4.24
$2Bu_4N^+MeSnCl_3I_2^{2-}$	40.94	7.80	2.83	40.52	7.67	2.86
2Et ₄ N ⁺ MeSnBr ₃ Cl ₂ ²⁻	28.54	6.29	3.35	28.98	6.10	3.98
$2Bu_4N^+MeSnBr_3I_2^{2-}$	37.06	7.01	2.60	36.64	7.64	2.52
2Et ₄ N ⁺ MeSnCLI ^{2- b}	30.45	5.57	4.09	31.35	5.10	4.29

^a Found, I, 45.17%. Required, I, 44.51%. ^b From MeSnI₃ and EtN⁺Cl⁻ in dichloromethane.

Table II. Far Infrared Spectra of Five- and Six-coordinate Anions.

Anion		vSnC	vSnCl	vSn—Br	vSn-I
$\frac{Me_3SnCl_2^{-a}}{Me_3SnBr_2^{-a}}$ $\frac{Me_3SnI_2^{-a}}{Me_3SnI_2^{-a}}$		552vs 555vs 553vs	227s	140m	134m
Me ₂ SnF ₃ ⁻ ^a Me ₂ SnCl ₃ ⁻ Me ₂ SnBr ₃ ⁻ ^c Ph ₂ SnCl ₃ ⁻		553w 573m 518m 567m 512m 229vs 218s	592s ^b 313s, 256s sh, 242vs br 332vs, 281s, 242vs	228s sh, 218 s	
$Me_2SnCl_4^{2-} c,d$ $Me_2SnBr_4^{2-}$ $Me_2SnI_4^{2-}$ $MeSnCl_5^{2-}$		580m 572m 559m 534m	227s 318s, 258vs, 215m	220s	186m
BuSnCl ₃ ²⁻ MeSnCl ₃ Br ₂ ²⁻ MeSnCl ₃ I ₂ ²⁻ MeSnBr ₅ ²⁻ MeSnBr ₃ Cl ₂ ²⁻		560m 539m 530m 530w 524m 528m 534m	305s, 250vs, 235vs 312s, 294s, 267s 328s, 297vs, 267m sh 306s, 248s 307s 261w	210m, 160s 212m, 191m, 160s br 209m, 188s sh, 160s br	187m sh, 163s
^a Data taken	from ref. 5.	^b √ _{sn-F} , ^c Data t	aken from ref. 2. ^d Ref. 2	2 reports the following infra-red da	nta:
	Et₄N⁺ Me₃Sr Et₄N⁺ Me₃Sr (Me₄N⁺)₂ Et₂	1CI₂ [−] 1Br₂ [−] SnCl₄ [−]	v _{sn-c} 534vs, 510vw sh 538vs, 507vw 520s	ע _{sn-ci} 338mw 346m	
It is obvious	from this dat	a [cf. ref. 4:			
	Me₃SnCl Me₃SnBr Et₂SnCl₂		∨ _{sn-c} 542s, 513w 539s, 511m 531, 497	ν _{sn-ci} 331vs 359, 352si	h]

that these samples contained considerable amounts of uncomplexed organotin halide.

Table	111.	Normal	Stretching	Modes	for	cis	and	trans
MX ₃ Y ₂ .	а							

	symmetry point group	ν _(M-X)	ν(μ-γ)
cis-MX ₃ Y ₂ trans-MX ₃ Y ₂	C_{2v} D_{3h}	$\frac{2A_1+B_2}{A_1'+E'}$	$\frac{A_1+B_1}{A_1'+A_2'}$

^a Infra-red active species are italicised.

Table IV. Normal Stretching Modes for cis and trans MX4Y2. a

	symmetry point group	V (M-X)	ν _(M-Y)
cis-MX ₄ Y ₂ trans-MX ₄ Y ₂	C _{2v} D _{4h}	$\frac{2A_1+B_1+B_2}{A_{1g}+B_{1g}+E_u}$	$\frac{A_{1}+B_{1}}{A_{1g}+A_{2u}}$
		·	

a Infra-red active species are italicised.

Inorganica Chimica Acta | 6:1 | March, 1972

expected for an anion of C_{2v} symmetry. In a reassignment of the far infra-red spectrum of the anior, Ph₃Sn-Cl₂⁻, the corresponding modes occur at 460, 450 cm⁻¹ and 270 cm⁻¹ respectively, a band at 190 cm⁻¹ being assigned to the Sn-Cl₂ antisymmetric stretching mode (A₂").⁶

Figure 2. y- and t-modes of vibration of $C_{6}H_{3}Sn \in$ (after Whiffen ").

Complexes of the type MX_4Y_2 may also have either the *cis* or *trans* configurations, and the group theoretical predictions for these are noted in Table IV. Exhibiting only one tin-carbon and one tin-halogen stretching mode, the dimethyltetrahalogenotin dianions, Me₂SnX₄²⁻, X = Cl, Br, I, have, therefore, **a** structure in which the two methyl groups are mutually *trans*. Similar conclusions based on infra-red and Raman work have been reached by Hobbs and Tobias for the complexes K₂[Me₂SnF₄], Cs₂[Me₂SnCl₄], Cs₂-[Me₂SnBr₄] and (Et₄N)₂[Me₂Sn(NCS)₄].⁷ Good agreement between this data and that reported here was found, except that v_{as} (Sn-Br₄) appears to be missing from the spectra of Cs₂[Me₂SnBr₄]₂.⁷

The methylpentahalogenotin dianions, as expected, have a single tin-carbon stretching frequency. The BuSnCl_{5²⁻} anion, however, has two tin-carbon stretching frequencies due to trans-gauche isomerism in the alkyl chain.¹² For an octahedral arrangement of one alkyl group and five halogens around the central tin atom, group theory predicts that three tin-halogen stretching frequencies $(2A_1 + E)$ will be infra-red active. The three anions studied, MeSnCl₅²⁻, BuSnCl₅²⁻, exhibit three tin-halogen bands, indicating that the SnCl₅ framework of these anions does not differ significantly from square pyramidal. For the mixed methylpentahalogeno anions, the low symmetry of possible isomers does not allow predictions concerning stereochemistry, the same number of infra-red or Raman active bands being predicted for each isomer. The mixed anions studied, however, did exhibit the expected number of tin-ligand stretching vibrations.

The infra-red data for the anion MeSnCl₄I²⁻ fit the low number of bands predicted by the C_{4v} symmetrical arrangement shown in Fig. 3. The bands at 307s and 261w cm⁻¹ may be assigned to the expected tin chlorine vibrations of A₁ and E symmetry respectively.

Figure 3. The proposed stereochemical configuration of the $MeSnCl_{4}I^{2-}$ anion.

The identical vibrations of the $MeSnCl_5^{2-}$ anion (also of C_{4v} symmetry) occur at 318s and 258vs. The difference in the intenstities of the E modes for the two complexes may be reconciled qualitatively on steric grounds. The A₁ symmetric breathing mode of the Sn-Cl₄ moiety (Fig. 4) would only be affected to a small degree by the replacement of a chlorine by an iodine in the axial position. The change in dipole moment for this vibration in the two vibration in the two vibrations is therefore similar, and both bands are of strong intensity. However, the presence of a large iodine atom might be expected to seriously reduce the amplitude of the E vibration, hence reducing the intensity of the corresponding band in the spectrum of the MeSnCl₄I²⁻ anion.

Figure 4. The A_1 and E modes of vibration of the Sn--Cl₄ moiety of $MeSnCl_3^{2-}$ and $MeSnCl_4I^{2-}$ anions.

The Me₂SnX₂ \rightarrow cis-Me₂SnX₃⁻ \rightarrow trans-Me₂SnX₄²⁻ transformations have mechanistic implications. To obtain the cis configuration of II (Fig. 5) the anion X⁻ may approach along either of the routes A or B. Trans-Me₂SnX₄²⁻ can only be formed, however, if the second X⁻ ion approaches the cis-Me₂Sn₃⁻ anion along pathway C. This would seem reasonable in view of the large C-Sn-C bond angle (140^s) of the cis-Me₂SnCl₃⁻ anion.¹³

Figure 5. Mechanisms of the Me₂SnX₂ \rightarrow cis-Me₂SnX₃ \rightarrow trans-Me₂SnX₄²⁻ transformations.

Low frequency infra-red data for terpyridyl-containing tin complex ions are listed in Table V. The complex nature of the spectra, due to the large number of terpyridyl bands, makes assignments of stretching modes difficult. Extra bands in the tin-carbon stretching region of the methyltin cations are possibly due to there being more than one formula unit per unit cell, as been demonstrated for [Me₂SnterCl]⁺[Me₂-SnCl₃]^{-,13} The broad linewdith of the tin-carbon stretching frequency of the [BuSnterCl]⁺ cation is most probably due to unresolved *trans-gauche* isomerism.

Discussion of the Results

It is apparent from an examination of the available data for five- and six-coordinate organotin complexes, the preferred geometries are, respectively, trigonal bipyramidal with *cis* (equatorial) organic moieties and octahedral with a *trans* arrangement of organic groups, seemingly independent of any charge carried by the complex.

Trialkyltin halides form neutral complexes with a variety of monodentate oxygen and nitrogen Lewis

(12) Cummins R.A., Austral. J. Chem., 18, 985 (1965).

(13) Einstein F.W.B. and Penfold B.R., J. Chem. Soc. (A), 3019 (1968).

Das, Buckle, Harrison | Far I.R. Spectra of some Five and Six Coordinate Complex Tin Ions

Table V. Low Frequency Infra-red Spectra of Terpyridyl Adducts of Organotin Halides.

Complex	v\$n—C																			
2[MeSnterCl ₂]*[MeSnCl ₂ ²⁻] [MeSnterCl ₃]*BPh ⁻	578s br. 545s, 530s 557m, 539s	508a 508a	478vw	441s 445m sh	412s 420w sh	390w 390vw	355vw	322s 311m	304vs sh	295va	288vs sh 26 275w sh 284m	575	268w	227w	202m			165vs		
Me ₂ SnterCl ⁺ [Me ₂ SnCl ₂] [Me ₂ SnterCl ⁺ 1 [Me ₂ SnterBr ⁺] ⁺ [Me ₂ SnBr ₂] ⁺	582m, 560s, 525m sh 575s, 560s, 530m 586m, 576m, 519m	509s 511s		432m 431m 438m	411w 411m 420w	20014	363vw 359vw	331# 331m 310w	312w 312w 279w	280vw 279w	242s 242s			231w 232w	205m	193s 191s	182m 180e 173s	164s 161s br 166s	1528	1495
[Me,Snter1]*[Me,Sn1,] ⁻ 2[SnterCl,]*[SnCl,] ⁻ [Ph,SnterCl]*[Ph,SnCl,] ⁻	589m, 562m, 526vw	511w 510s 510m	451vs	434m 440s sh	415m 403w 417m		357vw	323w 345m 329s	274w 331m sh 313m sh	314s br 283s	246vs		247-	225vs*	205m 206vw 210s*	705w		165.		
[Ph_SnterCi]*ClO		5114	4728	431m	418w		360vw	318w		290m	271m		24210	234m	219*	2070				

* Tin-carbon (aryl) stretching modes? Bands thought to be mainly associated with tin-halogen stretching modes are italicised.

bases, R₃SnX · L,^{1,14} and anionic complexes with halides, Ph₃SnCl₂^{-.3}

Similar cationic complexes containing the [R₃Sn $\cdot 2L$]⁺ moiety are known where L = NH₃¹⁵, DMSO, DMF, DMA or H₂O¹⁶ All are thought to possess a planar trigonal arrangement of organic groups with mutually trans electronegative atoms.

From the far infra-red data, we propose a similar disposition of methyl groups and halogens in the Me₃SnX₂⁻ anions, consistent with the previous stereochemical suggestions on the basis of the Mössbauer spectra of R₃SnCl₂⁻ anions and solid (5-coordinate) triorganotin halides.17,18

The five cordinate anions, $R_2SnX_3^-$, R = Me, Ph; X = Cl, Br, are also considered to be trigonal bipyramidal with cis equatorial position. This has been confirmed by structural analysis for the Me₂SnCl₃anion.¹³ The dimethyltrifluorotin monoanion, Me₂- SnF_3^- , on the other hand, possesses *trans* methyl groups.⁵

Octahedral cationic^{13,19}, neutral^{2,4,19,20} and anionic² complexes containing two organic residues and four electronegative ligands possess a mutually trans geometry for the tin-carbon bonds, with few exceptions.

In this context, the magnitude of the ¹⁹¹"Sn Mössbauer quadrupole splitting, Q, is a useful parameter. Point charge calculations 17,21,22 for octahedral SnX₄Y₂ systems predict that the Q for the trans isomer will be twice that of the cis isomer. The ^{119w}Sn Mössbauer stereochemical predictions are summarised in Table VI. The *cis* nature of dimethyltin-8-hydroxyquinolate has been confirmed by an X-ray crystal structure analysis,23 whilst (polymeric) dimethyltin difluoride consists of an infinite planar network of tin and bridging fluorine atoms with trans methyl groups above and below the plane.26

In contrast, for octahedral neutral^{1,2,5,27,28} and anionic²⁹ complexes of tin in which all bonds are to electronegative, potentially π -bonding, atoms, it appears

- (14) Krause C.A., J. Amer. Chem. Soc., 46, 2196 (1924).
 (15) Clark H.C., O'Brien R.J., and Pickard A.L., J. Organometal. Chem., 4, 43 (1965).
 (16) Kumar Das V.G. and Kitching W., *ibid.*, 10, 59 (1967).
 (17) Parish R.V. and Platt R.H., Inorg. Chim. Acta, 4, 65 (1970).
 (18) Idem, *ibid.*, 4, 589 (1970).
 (19) McGrady M.M. and Tobias R.S., J. Amer. Chem. Soc., 87, 1909 (1968).

1909 (1968).

1909 (1968).
(20) Isaacs N.W., Kennard C.H.L., and Kitching W., Chem. Comm., 820 (1968).
(21) Fitzsimmons B.W., Seeley N.J., and Smith A.W., J. Chem. Soc. (A), 143 (1969).
(22) Fitzsimmons B.W., Owusu A.A., Seeley N.J., and Smith A.W., ibid, 935 (1970.
(23) Schlemper E.O., Inorg. Chem., 6, 2012 (1967).
(24) Mullins M.A. and Curran C., Inorg. Chem., 6, 2017 (1967).
(25) Idem, ibid., 7, 2584 (1968).
(26) Schlemper E.O., Inorg. Chem., 5, 995 (1966).
(27) Harrison P.G., Lane B.C., and Zuckerman J.J., in preparation.
(28) Clark J.P., Langford V.M., and Wilkins C.J., J. Chem. Soc., (A), 792 (1967).
(29) Clark R.J.H., Maresca L., and Puddephatt R.J., Inorg. Chem., 7, 1603 (1968).

Inorganica Chimica Acta | 6:1 | March, 1972

Table VI. Stereochemistry of Octahedral R₂SnX₄ species based on 119mSn Mössbauer Quadrupole Splittings.

cis	trans
Ph ₂ Sn(NCS) ₂ · bipy ²⁵	R ₂ Sn(NCS) ₂ · bipy ²³
Ph ₂ Sn(NCS) ₂ · phen ²⁵	R ₂ Sn(NCS) ₂ · phen ²⁵
R ₂ Snoxin ₂ ²¹	$R_2SnX_4^{2}$
Ph ₂ Snoxin ₂ ²¹	$R_2SnX_2 \cdot bipy^{21,24}$
Ph ₂ Snacac ₂ ²¹	$R_2SnX_2 \cdot phen^{21,24}$
$Ph_{2}Sn[S_{2}CNR_{2}']^{22}$	Me ₂ Snacac ₂ ²¹
	R ₂ Sn[S ₂ CNR ₂ '] ₂ ²²

R,R' = alkyl; x = halogen; bipy = 2,2'-bipyridyl;phen = 1,10-phenanthroline; acac = acetylacetonate.

that cis stereochemistry is preferred, except when steric restrictions are placed on the system.^{27,30} This behaviour was explained by the ability of *cis* ligands to π -donate into different t_{2g} orbitals, and hence preferentially stabilise the cis complex.²⁹

Examination of Table VI shows that *trans* geometry is preferred¹³ except by (a) the dialkyltinbis(8-hydroxyquinolates) and (b) derivatives with a diphenyltin moiety. The configuration of the latter may be rationalised if the phenyl group is classed as a potentially π -bonding ligand.^{32,33}

Examination of the available structural and nuclear magnetic resonance data provides a rationalisation of the cis vs. trans possibilities for the alkyltin derivatives.

Given a fixed amount of tin 5s character to distribute among available bonds, an increase in coordination number, $4 \rightarrow 5 \rightarrow 6$, should increase the tin-ligand bond length as the percentage d character increases and the s character per bond falls. This is exemplified by the series SnCl₄, SnCl₅⁻, SnCl₆²⁻, in which the tinchlorine bond length increases in the order 2.30Å, 34 2.37Å, ³⁵ 2.39-2.45Å (depending on the cation). ²⁰ Consistent with this the ^{119m}Sn Mössbauer isomer shift decreases as 5s electron density is withdrawn from the tin nucleus.¹⁷ Listed in Table VII are the available structural data for alkyltin compounds.

As the cordination number at tin increases, contrary to expectation, there is a progressive decrease in the tin carbon bond length, accompanied by an increase in the tin chlorine bond length. This may be interpreted as a preferential redistribution of available tin 5s character in bonds to electropositive carbon at the

(30) Carty A.J., Hinsperger T., Mitrichuk L., and Sharma H.D., *ibid.*, 9, 2573 (1970).
(31) Rationalisation of the *trans* geometry of R₂SnX₄²⁻ has been

(31) Rationalisation of the *trans* geometry of R₂SnX₄²⁻ has been given by Tobias [*Inorg. Chem., 9, 1296 (1970)*]; and related to the available Mössbauer data.^{18,}
(52) Davies A.G., Harrison P.G., Kennedy J.D., Mitchell T.N., Puddephatt J.R., and McFarlane W., *J. Chem. Soc. (C), 1136 (1969).*(33) Huang H.H., Hui K.M., and Chiu K.K., *J. Organometal. Chem., 11, 515 (1968).*(34) Sutton L.E., Ed., «Interatomic Distances», Special Publication No. 11, Chemical Society, London, (1958).
(35) Bryan R.F., *J. Amer Chem. Soc., 86, 733 (1964).*

Table VII.

Compound	Coordination Number at tin.	d(SnC) Å	d(Sn-Cl) Å
Me _s SnCl ^a	4	2.19	2.37
$Me_3SnMn(CO)_5 b$	4	2.13	
$Ma_{10}Sn_4Ru_2(CO)_6 c$	4	2.14 (SnMe ₁)	
		2.16 (SnMe ₂)	
Me ₂ SnCl ₂ ^a *	4		2.34
$Me_2Sn[Fe(CO)_2cp]_2^d$	4	2.19	
Me ₄ Sn ₃ Fe ₄ (CO) ₁₆ e	4	2.22	
MeSnCl ₃ ^a	4		2.32
MeSnH ₃ . ^a	4	2.14	
$(MeSnS_{3/2})_{4}f$	4	2.1	
IPh ₂ Sn(CH ₂) ₄ SnPh ₂ I ^g	4	2.14 (Sn-alkyl)	
		2.15 (Sn-arvl)	
$ClSn[Mn(CO)_{5}]_{3}^{h}$	4	2	2.43
$Cl_2Sn[\pi-cpFe(CO)_2]_2^i$	4		2.43
$(\pi - C_{s}H_{12})IrSnCl_{3}$	4		2.39
Me ₃ SnCl · py ^k	5	2.15	2.42
Me ₃ SnF ¹	5	2.10	
Me ₃ SnNCS "	5	2.13	
Me ₃ SnCN ⁿ	5	2.16	
Me ₂ SnCl ₃ ⁻ °	5	2.11	2.32, 2.54
MeCl ₂ SnW(Cl)(CO) ₃ (MeSCH ₂ CH ₂ SMe) P	5	2.12	2.38, 2.39, 2.96
MeCl ₂ SnMo(Cl)(CO) ₃ bipy ^q	5	2.12	2.36, 2.43, 2.80
tarns-Me ₂ SnF ₂ ^r	6	2.08	
trans-Me2SnCl2 · 2DMSO s	6	2.06	2.51
trans-Me ₂ SnCl ₂ · 2pyNO ^t	6	2.22	2.58
trans-Me ₂ SnterCl ⁺ o	6	2.07	2.65
trans-Me ₂ Sn(NO ₃) ₂ ^u	6	1.99	
cis-Me ₂ SnOx ₂ v	6	2.16	

^a Ref. 34. ^b R.F. Bryan, J. Chem. Soc. (A), 696 (1968). ^c S.F. Watkins, *ibid.*, 1552 (1969). ⁴ B.P. Bir'yukov, et al., Chem. Commun., 159 (1968). ^e R.M. Sweet, C.J. Frichiet, Jr., and R.A. Schunn, Inorg. Chem., 6, 749 (1967). [†] C. Dörfelt, A. Janeck, D. Kobelt, E.F. Paulus and H. Scherer, J. Organometal. Chem., 14, P22 (1968). ^e V. Cody and E.R. Corey, *ibid.*, 19, 359 (1969). ^h J.H. Tsai, J.J. Flynn, and J.P. Boer, Chem. Commun., 702 (1967). ⁱ J.E. O'Connor and E.R. Corey, *ibid.*, 19, 359 (1969). ^h J.H. Tsai, J.J. Flynn, and J.P. Boer, Chem. Commun., 702 (1967). ⁱ J.E. O'Connor and E.R. Corey, *inorg. Chem.*, 6, 968 (1967), ⁱ P. Porta, H.M. Powell, R.J. Mawby, and L.M. Venanzi, J. Chem. Soc. (A), 455 (1967). ^k R. Hulme, *ibid.*, 1524 (1963). ⁱ H.C. Clark, R.J. O'Brien, and J. Trotter, *ibid.*, 2332 (1964). ^m R.A. Forder and G.M. Sheldrick, Chem. Commun., 1125 (1969). ⁿ E.O. Schlemper and D. Britton, Inorg. Chem., 5, 507 (1966). ^o Ref. 13. ^p M. Elder and D. Hall, Inorg. Cem., 8, 1273 (1969). ^a I dem, *ibid.*, 8, 1268 (1969). ^r E.O. Schlemper and W.C. Hamilton, *ibid.*, 5, 995 (1966). ^s Ref. 18. ^t E.A. Blom, B.R. Penfold, and W.T. Robinson, J. Chem. Soc. (A), 913 (1969). ^a J. Hilton, Ph.D. Thesis, Univ. of Nottingham, (1964). ^v Ref. 26. ^{*} Gas phase parameters. A recent X-ray crystal structure analysis shows that the solid phase structure shows considerable distortion from tetrahedral to octahedral, because of intermolecular association. Solid phase parameters: d(Sn-C), 2.21A; d(Sn-Cl), 2.40Å; d(Sn...Cl), 3.54Å. (A.G. Davies, H.J. Milledge, D.C. Puxley and P.J. Smith, J. Chem. Soc. (A), 2862 (1970))

Table VIII. Nmr ²J(¹⁹Sn-C-¹H) Coupling Constants. (Hz).

Compound	Solvent	² J(¹¹⁹ Sn-C- ¹ H)
Me ₄ Sn ^a		54.0
Me ₃ SnCl ^b	CHCl ₃	58.5
Me ₂ SnCl ₂ ^b	CHCl ₃	70
MeSnCl ₃ ^b	CHCl ₁	98
Me ₃ SnCl · DMSO ¢	DMSO	69.2
Me ₃ SnCl · py ^c	py	67.0
$Me_3SnCl_2 - d$	CHCl₃	70.5
Me ₂ SnCl ₃ ^d	CHCl,	88.9
Me ₂ SnCl ₂ · 2DMSO ·	DMSO	113
Me ₂ SnCl ₂ · 2DMSO ^e	CHCl ₃	86
Me ₂ SnCl ₂ · 2pyNO ^e	CH ₂ Cl ₂	93
Me ₂ SnOX ₂ f	CDCl ₂	71.2
Me ₂ SnterCl ⁺ d	PhNO₂	94.6
Me ₂ SnCl ₄ ^{2- d}	CHCl ₃	90.5
$Me_2Sn(NO_3)_2$ ^f	H ₂ O	108.7
MeSnCl ₃ ^a	D_2O	127.5

⁴ J.R. Holmes and H.D. Kaesz, J. Amer. Chem. Soc., 83, 3903 (1961). ^b E.V. Vanden Berghe and G.P. Van der Kelen, J. Organometal. Chem., 6, 515 (1966). ^c T.F. Bulles and R.S. Drago, J. Amer. Chem. Soc., 88, 5730 (1966) ^d This work. ^e V.G. Kumar Das and W. Kitching, J. Organometal Chem., 13, 523 (1968). ^f Ref. 19.

expense of the bonds to electronegative atoms, in accordance with the predictions of isovalent hybrization.³⁶

The nmr ²J(¹¹⁹Sn-C-¹H) coupling constant is also a guide, via the Fermi contact mechanism, to the s electron distribution along the tin-carbon axes. From Table VII, it can be seen that the coupling constant parallels the tin-methyl bond length, lending credance to dominance of the Fermi contact term in this case. The tin-ligand bond lengths are parallelled in the vibrational spectra; the tin-carbon stretching frequency moving to higher frequencies, and very low tin-halogen frequencies being observed for the Me₂SnX₄^{2~}, Me₃SnX₂⁻, and Me₂SnX₃⁻ (axial) anions.

The Me₂SnX₃⁻, X = Cl, Br, anions appear to be exceptional, having *cis* equatorial methyl groups. Tin-119m isomer shifts for these are almost identical to the values for the corresponding Me₃SnX₂⁻ anions indicating no gross changes in the total s-electron density at the tin nucleus.¹⁷ However, ²J(¹¹⁹Sn-C-¹H) values for the chlorides indicate a relative increase in the s-character of the tin-carbon bonds of Me₂SnCl₃⁻, which is also apparent from the increased C-Sn-C bond angle.¹³

It is interesting to note that Me_2SnOx_2 , the sole example of *cis*-methyl octahedral stereochemistry for which structural data are available, has a considerably

(36) Bent H., Chem. Rev., 61, 275 (1961).

Das, Buckle, Harrison | Far I.R. Spectra of some Five and Six Coordinate Complex Tin Ions

higher tin-carbon bond length and a lower ${}^{2}J({}^{119}Sn-C-{}^{1}H)$ than the *trans* cases, demonstrating the inefficiency of distribution of s-electron density to *cis* tincarbon bonds. The bis pyridine *N*-oxide complex of dimethyl dichloride is truly anomalous. Although it possesses *trans* geometry, the tin-carbon bond length for the similar dimethyl sulphoxide complex. This is very long, but ${}^{2}J({}^{119}Sn-C-{}^{1}H)$ is higher than that behaviour may, in part at least, be due to non-bonding repulsions between tin and oxygen atoms, since the Sn...O distance is very short (3.01 Å).

It appears, therefore, that there is good evidence

that, on increase in coordination number in organotin derivatives, there is a tendency for available tin 5s electron density to concentrate in bonds to carbon at the expense of bonds to more electronegative atoms. For octahedral dialkyltin derivatives, this is more efficiently accomplished by forming bonds to carbon which are predominantly sp in character, hence the observed *trans* geometry. Trigonal bipyramidal trialkyltin derivatives form bonds to carbon which have largely sp² hybrid character, hence *cis* equatorial geometry. In the Me₂SnX₃⁻, X = Cl, Br, anions an equatorial (sp)² site is occupied by a chlorine atom.